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The effect of the second-phase volume 
fraction on the grain size stability and 
flow stress during superplastic flow of 
binary alloys 

ADI A R I E L I  
Metals Research Laboratories, Olin Corp., New Haven, CT 06511, USA 

This paper considers to what extent the second-phase volume fraction in superplastic 
binary alloys affect the matrix grain size stability during deformation and, through it, the 
flow stress at constant temperature and strain rate. It is shown for five different 
superplastic binary alloy systems, that at constant temperature and strain rate the flow 
stress will increase with the deviation of the second-phase volume fraction in the alloys 
from that required for maximum matrix grain size stability. A new parameter (Z) which 
quantifies these deviations has been introduced in this paper. The possible errors in 
determining the pertinent parameters in the rate equation for superplastic flow by testing 
alloys with Z is discussed. 

1. Introduction 
The stability of grain structure during superplastic 
deformation of metals and alloys is of paramount 
importance. The superplastic regime is confined to 
very fine grained structures (d ~< 10/lm) and grain 
growth during deformation leads to the loss of 
superplastic behaviour [1] due to a reduction of 
the boundary area relative to the volume. In 
addition, it was shown that both the pre- 
exponential factor and the activation energy in 
the diffusivity expression are higher for a non- 
stationary boundary than for a stationary one [2]. 
Consequently, when grain growth takes place 
concurrently during superplastic deformation, a 
decrease in diffusivity might be expected leading 
to a decrease in strain rate at constant applied 
stress or an increase in the flow stress at constant 
imposed strain rate [1 ,3] .  

As pointed out by Nicholson [4], there are two 
thermodynamic forces acting on grain growth 
during superplastic deformation: (a) due to con- 
sideration of reduction of surface energy, and (b) 
due to lowering of the stored strain energy term 

*Unusually high ductilities were observed in fine grained 
behaviour per se was observed in this pure metal. 

arising from dislocation density due to defor- 
mation. The latter is related to the kinetics of 
grain boundary migration during deformation [5 ], 
which in turn is coupled to the kinetics of grain- 
boundary sliding [6], whereas the former will 
depend on the initial grain size, grain shape and 
diffusion. Second-phase particles (grains) will put 
an upper limit on the maximum grain size in a 
metal, i.e. the matrix size will be stabilized by a 
distribution of second-phase particles (grains). 
That seems to be the reason why superplastic 
behaviour is observed only in single-phase materials 
with second-phase particles uniformly distributed 
throughout the matrix or in two-phase alloys 
(microduplex alloys) [7, 8].* 

It is the purpose of this paper to examine the 
effect of second-phase particles (grains) on the 
matrix grain size stability and the measured flow 
stresses during superplastic flow of various alloys. 

2. Theory 
Recently, Beere [10] presented a computer model 
for grain size stability involving switching in micro- 

nickel [9] tested for short times. However, no superplastic 
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duplex alloys. His analysis indicates that in a 
perfect hexagonal array the minimum fraction of 
second-phase grains required to achieve grain 
stability is 0.25; whereas in an irregular grain 
structure it is ~--0.28. The condition for this 
analysis to hold is that the grains of both phases 
should have the same average size. More complex 
expressions, which take into account the relative 
size of the two phases as well as the volume 
fraction of the second-phase, were proposed by 
Gladman [11], Edington [12] and Hellman and 
Hillert [13]. Corti [14] compared these ex- 
pressions with data for a +/3 Ti-Mn alloys and 
concluded that only the expression due to 
Hellman and Hillert [13] gives acceptable values 
of the stabilized matrix grain size. 

According to Hellman and Hillert [13], the 
stabilized matrix grain size (d~) is related to the 
second-phase grain size (dt~) and volume fraction 
(Xt~) by the relation, 

4c/~ (1) 
da = 9/3'X~' 

where/3' is a correction factor. 
The volume fraction of the second-phase re- 

quired to stabilize the matrix grain size is then, 
according to Equation 1, 

4 1 ~ (2) 

Equation 2 indicates that Xt3 will be uniquely 
determined by the ratio of the second-phase grain 
size to the matrix grain size. This dependence is 
shown schematically in Fig. 1 for various values of 
/3'. The plots in Fig. 1 suggest that relatively small 
volume fractions (Xt3 = 0.1 to 0.2) of fine second- 
phase particles (d(Jdc~ = 0.2 to 0.3) will stabilize 
the matrix grain size as effectively as large volume 
fractions (X# = 0.4 to 0.50) of large grained 
second-phase (d~/d~ = 0.9 to 1.0). 

It is of interest to calculate when the boundary 
of matrix grain will be able to sweep across a 
second-phase grain. The surface energy (E~ )o f  a 
spherical matrix grain is given by 

Ec~ = 4r:r~a, (3) 

where ra is the radius of the matrix grain and a is 
the surface tension of the boundary. Following 
Reed-Hill [15], the pull of boundary on the 
second-phase grain is a maximum at a contact angle 
between the boundary and the second-phase grain 
of 45 ~ and is given by 
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Figure l The variation of the volume fraction of the 
second-phase necessary to stabilize the matrix grain size 
with the ratio of second-phase to matrix grain size. The 
broken line represents the upper limit for the capability 
of the second-phase to hinder the matrix grain growth 
(see text). 

F = ~r~o, (4) 

where r~ is the radius of a spherical second-phase 
grain. 

In order for the boundary to sweep the/3-grain, 
the energy which must be provided is 

E~ = FX2r~ = 27trio. (5) 

Equating Equations 4 and 5 we obtain 

r~ _ d~ _ 21/2 . (6) 
r~ da 

Equation 6 indicates that there is an upper limit 
on the d~/d~ ratio of 1.41. Beyond this limit the 
second-phase will cease to hinder the matrix grain- 
boundary motion and rapid, abnormal matrix 
grain growth will occur. This condition is illus- 
trated in Fig. 1 by the broken line for/3' = 1.257. 
The volume fraction of second-phase needed at the 
limit is 0.5. At lower values of /3' the volume 
fraction is higher than 0.5 and, therefore, a-phase 
will play the role of the second-phase. 

The deviation from the ideal volume fraction 
(as calculated from Equation 2) for a given d~/d~ 
ratio can be expressed as the ratio 

Z = X~,  (7) 
x~ 
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Figure 2 Variation of  the  flow stress with parameter  Z 
for C u - Z n  alloys. The numbers  in parentheses are the  
nominal  percentage of Zn in the  alloys. The open 
symbol  shows the corrected af  for the  Zn = 39.15 wt% 
alloy (see text) .  

where X~ is the volume fraction determined from 
the applicable phase diagram. 

3. Comparison with experiment 
As mentioned earlier in this paper, most of the 
alloys which behave superplastically have a two- 
phase structure. For any binary or duplex alloy 
over the range of nominal compositions at one 
temperature, the chemical composition of each 
phase remains unchanged and only the volume 
fraction of the phases changes with the nominal 
composition. Therefore, any difference in mechan- 
ical behaviour of these alloys during superplastiG 
deformation may be direEtly attributed to the 
difference in volume fractions of the two phases. 

3.1. C u - Z n  alloys 
Suery and Baudelet [16] investigated four Cu-Zn  
alloys with Zn concentrations (wt%) between 
39.15 and 42.0. The microstructure consisted of a 
mixture of a-phase (Cu-Zne)  and /~-phase 
(Cu-Zn#). At a constant temperature and strain 
rate the flow stress increased as the amount of Zn 
in the alloy increased. Their data are plotted in 
Fig. 2 as the flow stress at T =  873K and ~ = 
1.67 x 10 -4 sec -1 against the ratio Z. 

The experimental flow stress values are indi- 
cated by filled circles in Fig. 2. It is evident from 
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Figure 3 Variation of the  flow stress with parameter  Z 
for A1-Cu alloys. The numbers  in parentheses  represent  
the nominal  percentage of Cu in the  alloys. 

Fig. 2 that there is excellent correlation between 
o and Z for all but the alloy poorest in Zn. How- 
ever, for this alloy the stress sensitivity coef- 
ficient was found to be equal to 2.5, whereas for 
the three other alloys the lower experimental 
value obtained was 2 [16]. If the stress flow for 
this alloy is corrected as o z/2"s the new stress value 
falls in line with the others (open symbols in Fig. 
2). 

3.2. A l - C u  al loys 
Matsuki et aL [17] investigated three A1-Cu 
alloys with nominal compositions of 6 wt% Cu, 
20 wt % Cu and 33 wt % Cu, respectively. The 
A1-6 wt % Cu alloy consisted of a single-phase 
(a-A1) with fine second-phase (0-Cu A12) particles 
uniformly distributed throughout the matrix. The 
A1-20wt% Cu and A1-33 wt% Cu have a duplex 
(two-phase) structure. At any test temperature and 
constant strain rate the flow stress decreased with 
increasing amount of Cu in the alloy. A plot of the 
flow stress at T = 753 K and ~ = 3.33 x 10 -s sec -1 
against the parameter Z is shown in Fig. 3. The 
flow stress is minimum for Z values close to unity 
and increases at both higher and lower values. It 
is of interest to note that, although the alloys 
A1-6 wt % Cu and A1-20 wt % Cu have almost the 
same deviation from Z = 1 (Z = 1.23 and 
Z = 0 . 7 3  for A1-20wt%Cu and A1-6wt%Cu,  
respectively), the flow stress is higher for Z values 
less than 1, i.e. the volume fraction of the second 
phase is lower than that given by Equation 2. 
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Figure 4 Variation of the flow stress with parameter Z 
for Cu-P alloys. The numbers in parentheses represent 
the nominal percentage of P in the alloys. 

3.3. Cu-P alloys 
Two hypoeutectic compositions (Cu-6  wt % P and 
Cu-7  wt % P) and one hypereutectic composition 
( C u - 1 0 w t % P )  were studied by Herriot et al. 

[18]. The flow stress decreased (at constant test 
temperature and strain rate) with decreasing 
nominal composition of P in the alloys. This be- 
haviour is apparently different from that de- 
scribed previously for Cu-Zn  and A1-Cu alloys, 
where the flow stress decreased with increasing 
amount of the alloying element. However, the 
rationale for Cu-P  alloys is the same as for the 
other alloys. When the flow stress is plotted 
against Z (Fig. 4), there is an increase in flow 
stress for Z value deviation from unity, both at 
higher and lower values. 

these alloys consists of two phases: c~ which is 
Al-rich and/3 which is Zn-rich. 

The behaviour of these alloys is different from 
those of the alloys studied until now in the sense 
that the flow stress at any constant temperature 
and strain rate within the superplastic regime 
passes through a minimum at some intermediate 
concentration of the alloying element (18 wt % A1 
at 423 K and 22wt% A1 at 523 K). The variation 
of the flow stress with the percentage additions 
of A1 is shown in Figs5a and 6a for ~ = 1  x 
10 -2 sec -t and T = 4 2 3  and 523K, respectively. 
Once again, the explanation for the stress variations 
with composition lies in the departure of the 
second-phase volume fraction in the alloys from 
those given by Equation 2, i.e. Z value (Equation 
7). This is shown in Figs 5b and 6b. The behaviour 
of Zn-0 .4wt%A1 at 523 K is very interesting 
(Fig. 6). At this temperature the alloy is single- 
phase, all the aluminium being dissolved in the Zn 
solid-solution. As a consequence, the flow stress 
increases rapidly (Fig. 6a) and cannot be cor- 
related with the Z value (Fig. 6b). 

3.5. High carbon steels 
These alloys were investigated by Kayali [20], 
Caliguiri [21] and Walser and Sherby [22]. The 
variation of the flow stress with percentage carbon 
is similar to that for Zn-A1 alloys, going through a 
minimum at 1.6wt%C at T = 9 7 3 K  and ~ =  
10 -4 sec  -1 (F ig .  7a).d~ andd~ in Equation 2 were 
assumed to be the same for all alloys having values 
of 0.8 and 0.5_gin, respectively [22]. Even with 
this approximation, the correlation between the 
flow stress and Z is exceedingly good (Fig. 7b). 

3.4. Z n - A I  a l loys  
Zn-A1 alloys of compositions ranging from 
0.4wt%Al to 50wt%A1 were investigated by 
Kaybishev and co-workers [19]. The structure of 

4. Discussion 
The relationship between the strain rate, 6, and the 
flow stress, o, during steady-state superplastic flow 
is usually expressed by a n0n-dimensional rate 
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equation of the form 

D - ~  - A ~- , (8) 

where D is the diffusion coefficient for super- 
plastic flow, G is the shear modulus, b is Burgers 
vector, d is grain size, k is Boltzman's constant, 
T is temperature,  p is strain rate dependence on 
grain size coefficient, n is stress sensitivity and A is 
the substructure related parameter. 

With the exception of  k, which is a universal 
constant, the parameters incorporated in Equation 

8 can be grouped into three categories: (i) material 
related properties (G and b);  (ii) experimentally 
imposed parameters (~, a, T and d) ;  and (iii) defor- 
mation mechanism related parameters (.4, D, p and 
n ) . *  

The complete form of  Equation 8 can be deter- 
mined in, say, constant strain rate tests where the 
flow stress is the measured parameter as follows. 

4.1.  D e t e r m i n a t i o n  o f  n va lue  
Specimens of constant average grain size are tested 
at the same temperature at several strain rates and 
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Figure 6 (a) Plot of  the  flow 
stress against composi t ion at 
5 2 3 K  for Z n - A 1  alloys (b) af  
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numbers  in parentheses  are 
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*This classification is no t  exact ly rigorous since some o f  the  parameters  belong to more  than  one category. For  example ,  
the  G value will vary wi th  tempera ture  and D will vary with bo th  tempera ture  and alloy for the  same deformat ion  
mechanism.  Moreover, once we impose a certain strain rate while keeping d and T constant ,  t he  measured a value will 

depend upon  bo th  alloy and deformat ion  mechanism.  
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the flow stresses are measured. The stress sen- 
sitivity coefficient, n, will be given by the slope of 
the curve in the in ~ against In o plot or 

~(ln ~1 (9) 
l"l ~-- ~ (hq o a, T 

However, in the case of  long testing times* both 
second-phase and matrix grains coarsen and, unless 
their coarsening kinetics are identical, X 3 will 
change during the test, resulting in a Z dependence 
on testing time (or strain). The grain growth 
data reported by Sammelson et al. [24] for 
Z n - 4 0  wt % A1 alloy show that the grain growth 
kinetics are different in the a- and p-phases, 
respectively. The same should be true for other 
alloy systems due to differences in diffusitivities, 
size (i.e. surface energy) and rate of dislocation 
accumulation between the phases present in the 
alloys. Therefore, even for small variations in the 
average grain size, the variation in Z value with 
strain rate (i.e. testing time) can be quite large, 
leading to an apparent dependence of n on strain 
rate. Since the testing time increases with de- 
creasing strain rate, n, apparently, will decrease 
with decreasing strain rate within the superplastic 
range. 

4.2. Determination o fp  
Specimens of different average grain sizes 
(obtained by giving the alloy different thermo- 
mechanical treatments) are tested at constant tem- 
perature and strain rate. The parameter p is deter- 
mined from the slope of the curve in the in a 
against in d plot or 

(in o) 
; = ( 1 0 )  

where d is the average grain size and is given by 

d ~- (1 --X'~)d~ +X'~d 3. (11) 

It is evident from Equation 11 that if an alloy is 
prepared with two average grain sizes dl and d2 

by, say different annealing treatments, Equation 
10 will yield a true p value only if both phases 
respond identically to the annealing treatments, 
i.e. d l / d 2  = dal/da2 = d ~ l / d f l 2  . In any other case 
d31/da2 #dfi2/da2 and Zt  4:Z2 and Equation 10 

*For example, Mohamed et al. [23] reported that the flow 
T = 523 K) has been obtained after --~ 15 h. 

yields an apparent p value which will depend upon 
the thermomechanical treatments given to the 
alloys to result in different grain sizes. ~ It is also 
self-evident that if concurrent grain growth takes 
place during deformation, the deviations of p, 
determined in such experiments, will increase from 
the true value (i.e. Z = 1). 

4.3. Determination of the activation energy 
for deformation 

The diffusion coefficient in Equation 8 is given by 

 12, 

where Do is the pre-exponential factor, Q is 
activation energy for deformation and R is the gas 
constant. 

Testing several specimens of constant average 
grain size at constant strain rate and various tem- 
peratures, Q can be determined from the slope of 
the curve of the in (onG"-IT) against ( l /T)  or, 

In (onGn-l T) 
Q = R (13) 

O(1/T) 

It is evident from Fig. 2 that X~ will vary with 
temperature and, hence, for a given structure at 
room temperature, a different Z value will be 
taken at each test temperature. Therefore, because 
of the strong dependence of a on Z, Q values 
determined at constant average grain size will be in 
error regardless of the specific experimental 
method used for its determination (e.g. tensile 
tests, creep tests, rapid temperature variations, 
etc.). In this case, again, concurrent grain growth 
during deformation will compound the error. An 
additional complication arises in the case of Q 
determination because the chemistry of the phases 
present in the alloy will change with temperature 
and so does their diffusivity [25]. 

From the foregoing discussion it becomes 
evident that the rate equations experimentally 
determined for superplastic alloys might be 
seriously in error when only the average grain size 
is considered. Careful consideration should be 
given to alloy selection for laboratory studies and 
only alloys which can be prepared to result in Z 
values close to unity should be used. In such a 

stress value at d = 1.67 X 10 -s sec -1 (d = 2.5 X 10 -4 cmand 

?The same average grain size can be, conceivably, obtained by (i) cold working and subsequently annealing for a short 
time or (ii) by annealing for a long time without any previous cold working. However, the phases present in the alloy 
will react differently to these two treatments. 
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way maximum grain size stability during sub- 

sequent mechanical testing is ensured. Further- 
more, the thermomechanical treatments used to 
obtain various average grain sizes in the alloy 
should be designed in such a way to yield also, 

identical or very close Z values. Additional care is 
required to make sure that, by using different 

thermomechanical treatments, a subtle difference 
in texture and/or other substructural features are 
not produced in the micr0structure [3, 25].  

Finally, it should be pointed out that for reasons 
discussed above all the methods currently used for 
Q evaluation are erroneous. The problem can be 

eventually circumvented by determining the 
activation energies for deformation over a narrow 

temperature range and selecting an alloy system 
for the investigation which will show only minute 

variations in the volume fraction and chemistry of 
the phases within the narrow temperature range. 

5. Summary and conclusions 
It was shown in this paper that when the 

chemistry of the phases in superplastic binary 
alloys remains the same over a range of nominal 

alloy compositions, the flow stress at a constant 

test temperature and strain rate is determined by 
the matrix grain size and its stability. The matrix 
grain size stability is determined, in turn, by the 

volume fraction of the second phase present in the 

alloy. 
Analysis of the data published in the literature 

for five alloy systems shows that the volume frac- 
tion of the second phase necessary to stabilize the 
matrix grain size can be calculated by an ex- 

pression (Equation 2) developed by Hellman and 
Hillert [13]. The values taken by the flow stress 

at constant temperature and strain rate for each 
nominal alloy composition can be correlated 

extremely well with a parameter Z (Equation 7) 
which indicates the deviation of the second-phase 
volume fraction in alloy from that required for 
matrix grain size stabilization. 

Without taking into account Z values for 
various testing conditions, the experimentally 
determined parameters in the rate equation for 
superplastic flow (Equation 8) might be different 

from their true values (i.e. at Z = 1) and can differ 
from investigation to investigation even when the 
same nominal composition, average grain size, 
testing methods and conditions are used. 

Finally, it was suggested that careful consider- 

ation be given to alloy selection and thermo- 
mechanical treatments used for alloy preparation 

before actual testing in order to ensure maximum 
grain size stability and comparable Z values for all 
the testing conditions. 
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